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SUMMARY

The numerical solution of exterior problems is typically accomplished

by introducing an artificial, far field boundary and solving the equations on

a truncated domain. For hyperbolic systems, boundary conditions at this

boundary are often derived by imposing a principle of no reflection. However,

waves with spherical symmetry in gas dynamics satisfy equations where

incoming and outgoing B.iemann variables are coupled. This suggests that

'natural' reflections may be important. We propose a reflecting boundary

condition based on an asymptotic solution of the far field equations. We

obtain nonlinear energy estimates for the truncated problem and present

numerical experiments to validate our theory.
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INTRODUCTION

Interestingandimportantproblemsin gasdynamicsareoftenposedin

exteriordomains.Examplesincludetheexplosionof gasbubblesin various

mediaandflowsexternalto aircraft. An approachto thenumericalsolution

of suchproblemsis to restrict the computationaldomainto a finite region

throughthe introduction of an artificial boundary.For largetime compu-

tations interactionsbetweenthe solutionand the artificial boundarycan

stronglyinfluencetheresults.Thefocusof thispaperis thedevelopmentof

anaccuratetreatmentof theseconditions.

A varietyof authorshaveinvokeda principleof no reflection.Notable

amongtheseareEngqulstandMajda[2]whostudiedthegenerallinearcase

andHedstrom[8] andThompson[10]whoconsiderednonlinearhyperbolic

systems.However,aspointedout by GustafssonandKreiss[3],conditions

satisfiedby theexactsolutionmayinvolvereflections.Thecurrentstudyin-

volessphericalwaveswhichexhibitcouplingbetweenincomingandoutgoing

P_iemannvariables.Oneexpectsthis couplingto resultin naturalreflections

whichshouldbeaccountedfor in anefficientnumericaltreatment.Indeed,

Thompson[10]documentsthe disappointingperformanceof nonreflecting

conditionsin suchcases.

An alternateapproachis to incorporatethe asymptoticbehaviorof the

solutionin the far field. Conditionsfor linearproblemsbasedon far field

asymptoticshavebeensucccessfullyemployedbyBaylissandTurkel[1]and

HariharanandBayliss[7]. Our procedure is to develop approximate solu-

tions to the appropriate weakly nonlinear initial boundary value problem in

the region exterior to the computational domain. A condition is thus ob-

tained which includes appropriate reflections at the computational bound-
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ary. Conditions involving incoming waves generated by inhomogeneities in

the discarded region have also been proposed by Gustafsson [4,5].

The particular equations under consideration are the Euler equations for

spherically symmetric, isentropic fluid flow;

Op Oz 2 z (1.1)
0--_ + Or - r'

0z 0 [z2 (1.2)+ 7 + f(p)] =

Here p is the density, z is the momentum and f(p) is the pressure. Initial

conditions are

p(r, 0) = p0(r) and z(r, 0) = zo(r), r >_ r0. (1.3)

We also assume that the computational boundary is located at r = L (L >

r0) and that proper conditions at r0 are specified. Finally we assume that

p0(r) = p_ and z0(r) = 0, r> L. (1.4)

The plan of this paper is as follows: In section 2 we follow the construc-

tion presented by Whitham [11] to obtain asymptotic solutions in the far

field and derive the boundary conditions. Nonlinear energy estimates are

established for the resulting finite domain problem in section 3. Section 4

contains a discussion of the numerical treatment of the boundary conditions.

In section 5 numerical experiments are presented for an idealized weak ex-

plosion problem. Our technique is shown to yield the correct steady state

for values of L significantly smaller than those required by the nonreflecting

conditions. In the final section we propose extensions of our conditions for

the truly three dimensional case.

3_



DERIVATION OF ASYMPTOTIC BOUNDARY CONDITIONS

We find it convenient to work with equations involving RJemann vari-

ables. They are

Here

z

= - + c(p), (2.1)
P
z

s : G(p). (2.2)
P

c(p) = f V_dp. (2.3)
P

Then equations (1.1) and (1.2) take the form

cgt + + Or = pr '

o-7 + - _ =

Here we assume that for r > L

z

That is, the flow is subsonic in the far field. Then R and S are, respectively,

the outgoing and incoming l_iemann variables. Note that the lower order

terms couple the equations for the RJemann variables. This means that an

outgoing wave generates an incoming wave.

To derive the boundary conditions, we consider the initial boundary

value problem (2.4), (2.5) and (1.4) on the exterior domain r >_ L with

boundary condition

R(Z,t) : g(t). (2.6)

Solving this problem yields

s(z,t) = J:[g(.)]. (2.7)



That is the incoming variable is a functional of the outgoing variable.

Equations (2.6) and (2.7) represent an exact boundary condition at r =

L. However, the explicit form of the functional 9v is not known in general.

Therefore, we construct an asymptotic solution of the exterior problem valid

for L sufficiently large. (Similar constructions for steady state problems can

be found in Hagstrom and Keller [6].) Consistent with the known far field

behavior of solutions of the linearized equations we expand R and S as

follows:

R(r,t) = Ro + Rl(r,t) + _2 + ..., (2.8)
P

S2(r,t)
s(_,t) = So + s_(r,t) + _ + .... (2.9)

P

We note that

Ro = -so = c(poo). (2.10)

We further assume

for some function H(t).

_(t) (2.11)g(t) = Ro + L

Equations for R1 and $1 are given by:

OR___A ( R1 + & )ot +\ _ + _ + p(po_)(Rx ,,- sl) oR_o,.- o, (2.12)

ot +_ _ _-- • - P-P°°-(R_r Or

Here

_,f"(_,)
P(u) -

4f'(u) "

Following Whitham [11] we have retained ! corrections to the characteristic
7,

speed to suppress nonuniformities in the expansion as r approaches infinity.

5.
!



Note that the source terms are absent at this order, so R1 and $1 are RJe-

mann invariants of the approximate equations (2.12) and (2.13). Since the

characteristics corresponding to $1 all originate at t = 0, we deduce

S1(r,t) = 0. (2.14)

That is, we have a simple wave. Now equation (2.12) can be solved for

R1 using themethod of characteristics. The differential equations for the

characteristics are given by

_rr -

Using the fact that R1 is constant along the characteristics we find that

t(r;7-) = 7-

where we have introduced

Rl(r,t(r;7-)) = H(7-), (2.16)

r - L - B(-',')_[_+ B¢-,-)_
+ B(r)_ (2.17)

+ _ '

H(7-)[_ + e(poo)]

B(7-) -

We remark that this solution may break down where characteristics inter-

sect, in which case a shock must be fitted in. In order to compute the first

nonvartishing correction to the incoming variable we consider the equation

for $2;

Ot Or

To solve equation (2.18) we make a change of variables in which S_ is ex-

pressed as a function of 7- and r . This yields the above equation in the

form

( _1 07-0t D,7-,r,ff_r,) 07-) 0S207- D(v,r)_--r2 - R1(7-), (2.19)



which we writeas

os2 #(_,r)D(T,r)0S2 _ #(T,r)al(_). (2.20)
8T Or

Here

r ,,r ,,+m_,,+s_ (,-L)s(_)11
N(v,r)

,+B(_-)J _//,(p_)]

and

(P-_)H(T)

D(%r) = 1 + _r

Again we solve equation (2.20) by the method of characteristics. We inte-

grate from the first characteristic, _" = 0, where $2 = 0. We will only need

to know $2 at the boundary r = L . Thus we obtain

_0 T
S_(L,_) = Rl(s)lV(s,_(_;_,L))d_, (2.21)

where

d_ - -lVD, _(_;T,L) = Z. (2.22)
d8

To put equation (2.21) in a more convenient form, we differentiate with

respect to T:

8S2(L,T)
_T

(2.23)

Now the integral term is of order _1due to the presence of -_('sNTherefore

_(L,_) =we neglect it along with -_ contributions to N. Using = 1, S

S0 + _$2 and RI(T) = L(R(L,t)- Ro) we finally obtain

sl,= L = v/T(P°°)(a(z't)- a0) (2.:4)
Ot 2L

7.



Equation (2.24) is the boundary condition we propose. We also note

that the relationship

z G(p) = -C(poo) + o(_), (2.2s)
P

can be used to derive a number of asymptotically equivalent conditions. For

example
Os z_
Ot Lp

(2.26)

and
c_S (c(p) - v(p=))v_p=)

i

Ot L
(2.27)

ENERGY ESTIMATES

We now study the problem on the truncated region [r0, L], rewriting

the field equations (1.1) and (1.2) in a convenient form. Moreover, we take

r0 = 0 for definiteness. Thus the problem under consideration is

0--[ + r_cgr = 0 , (3.1)

Oz 1 0 . 2z2. 0 fo-7 + _z_ (_ 7 ) + _[ (p)] = o. (3.2)

Initialconditionsare

p(r, 0) = p0(r), z(r, 0) = z0(r) r > 0 . (3.3)

Our boundary condition at r = L has the integrated form

£ : G(p) - G(poo)+ _ -_d_+ Z (G(p)-G(poo))d_.
P P

Corresponding, respectively, to (2.24), (2.26) and (2.27) we have:

(3.4)

= Z _ _ (3.5)
2L '



a
_ S'vq_-=)

L

a = 0,# -

# = o, (3.6)

L (3.7)

In addition we need to introduce a finiteness condition at r = 0 due to

the singularity of the equations (3.1) and (3.2). This is accomplished by

demanding

z(r,t) _ 0 as I"-,0 (3.8)

It is difficult to establish the weU-posedness of initial-boundary value

problems for nonlinear hyperbolic systems. We content ourselves with the

derivation of bounds on the growth of the total energy of the system. The

(physical) energy density is defined by:

1 z 2

Z- 2 p + pe(p), (3.9)

where the internal energy e satisfies:

f(P) (3.10)e'(p) = p--T"

We also define

q = VE. (3.11)

Here the gradient is with respect to the variables p and z. Then

q : 2 p2 -{" , (3.12)7-1

Taking the inner product of (3.1) and (3.2) with q we obtain

OE 1 0
+ ----_ = O, (3.13)

Ot r 2 Or

where

[_2z(e(p)+ --;-- + 2p 2



Now integrating (3.13) over [0, L] with the weight r 2 we obtain

• '(t) + _io_ = o,

where

(3.14)

fo L_(t) = _2Edr, (3.15)

which is the total energy of the system. It is useful to rewrite _:

= - pe + f + . (3.16)
P

Clearly, (3.8) implies that @ = 0 at r = 0 leaving us with

¢'(t) = -9(L,z(L,t),p(L,t)). (3.17)

We now state the main theorem of this section.

Theorem 1 There exists a bounded/unction F(t), depending only on f and

P=o, so that the total energy of any generalized solution of (3.1)-(3._), (3.8)

satisfies:

,(t) _< 3(0) + r(t). (3.18)

Proof:

Using Fubini's theorem it may easily be verified that (3.4) solved for _ yields:

z( L, t ) footp(L,t) - a(p(Z, t))- a(p_) + (,_+ _) e°('-')(a(p(L, _))- a(;_))d_.

Since the bracketed quantity in (3.16) is positive, the right hand side of

(3.17) can be positive only if _ is negative. As p is nonnegative and G is a

nondecreasing function, a positive contribution to the total energy implies:

G(p) < G(pc¢)(l+ A(t)),

p < G -1 (G(p_)(1 + A(t))),
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and

P _< G(po_)(l+ A(t)),

where

{ (_+_)(e_-l), a¢O,act) = _ ,
#t, _ = 0.

Substituting these inequalities into (3.17) and integrating from 0 to t imme-

diately yields the desired result. If we specialize to the case of a polytropic

gas, f(p) - kp "r, we may further conclude that r grows algebraically if (2.27)

is employed and exponentially in the other cases.

NUMERICAL PROCEDURE

In this section we briefly discuss a particular numerical implementation

of the boundary conditions we have developed. We note that many different,

stable implementations are possible. Those we present here are used in the

numerical experiments which follow.

Introducing a uniform mesh:

ri = (i-1).Ar, i = 1,...,N+I, (4.1)

we denote our approximate solution vector by:

U_ = (p(ri't) ) (4.2)z(,'i,t) '

and also introduce notation for the approximate fluxes and sources:

F(u) = _, (4.3)
7 + I(;) '

H(U,r) = ( _),_2 . (4.4)W

1l



Weemploythe two step Lax-Wendroff method (Sod [9]) in the interior:

+_ = ½(u_+ uh_)- _(F(uh_)- F(U_))

(½(v + , i= 1,...,N;
(4.5)

u:+a' ui'- a_Fcu'+, _ '+_= _, ,_+_ ,-F(UL½ ))
(4.6)

-At_ (!:U '+-_ u!+Y ,,._), ..,\z_ i+½ + '-i ) i=2,. N.

This is second order in space and time for smooth solutions. The boundary

conditions are used to update the solution at the boundaries. At r = L, our

conditions(2.24),(2.26),(2.27)are allof the form:

0s
- Q(p,_). (4.7)Ot

A second order discretization of this is given by:

s ¢rrt + At _ _U;++T= - s(u;_)+ 2AtQ( ). (4.8)

Note that all quantities on the right are available from the interior scheme.

Another numerical condition is needed. We obtain it from the equation for

the outgoing characteristic, (2.4). Writing it in the form:

OR OR
o-7 + c(p,z)-g = w(p,_),

we have the second order discretization:

(1+ 0)'r"'+a'_ R(u_¢) R(u_+_') +"_N+_ ,= R(U_+_)+
(4.9)

-_(R(U_+_)- n(u_,) - R(u_+_')),

t+ zx--A
)at

where

12



and

Theseequationsyield updatesof the Riemannvariablesat the artificial

boundary.Equations(2.1) and(2.2) are invertedto update the primitive

variables:

p(rN+l,t + At) (4.10)

_(_N+l,t+ At) = (4.11)

At the origin, continuity of the velocity field requires:

z(o,t + At) = o. (4.12)

Again, a numerical boundary condition is required which we obtain from

the characteristic equation, (2.5). Writing it in the form:

oT + c(;,z)_ _ w(p,z),

we use the second order approximation,

where

(1- 0) s(u_÷_') = s(uD + s(u_)- s(u_+A') +
- O(s(u_) - s{uD + s(uJ+a')),

^ t+ At

C(Ua T)At

Ar

and

= 2_tw(u_ ).
2

Given S, p can be computed:

p(0,t+At) = c-_(-s).

(4.13)

(4.14)

This completes the update of U: +zxt.
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NUMERICALEXPERIMENTS

Herewepresentsomenumerical calculations to validate the effectiveness

of our boundary conditions. For purposes of comparison we include the

condition resulting from Thompson [10]. We here list and label the different

conditions that we have used for the computation. All of them have the

form

0(: ))- c(p = Q

where

z_
(HH1) Q = pL

(HH2)

(HH3)

(5.1)

(from equation(2.26))

Q = _ (o(p)- o(p.))
L (from equation(2.27))

Q = _(R(L,t) - C(p_)) (from equation(2.24))
2L

2zV/_P_) (from Thompson[7])(Th) Q -- L

A simple idealized explosion problem is considered in which the density

is initialized to

3 r<lp0(r) = 1 r > 1

and the momentum is initialized to

z0(r) = 0 0<r<L .

The true solution includes the propagation of a weak, decaying shock

with the solution on the truncated region eventually approaching the steady

state p = 1 and z = 0. We note that only this steady state is compatible

with boundary conditions HH2 and HH3. By contrast, HH1 and Th are

compatible with steady states at any density. In the graphs presented here

14



themomentumanddensityareplotted againstr at differenttime steps. We

use a spatial mesh width of Ar = .05 and a time step chosen so that the CFL

number corresponding to sound speed of the compressed gas, _, is .25.

In the first case considered here the far field boundary is located at 5 (L = 5).

Figures 1-4 (a) show, at time steps 400,600, 800 and 1000 respectively, the

results obtained from the computations using the condition HH1. Similarly

for conditions HH2, HH3 and Th the results are reported in figures 1-4 (b)-

(d). As can be seen in the figures the solutions are initially qualitatively

the same for each boundary condition. For longer times, however, marked

differences in the solutions appear. All approached a steady state. As

discussed above, this is necessarily the correct steady state for HH2 and

HH3. For HH1 the final density was roughly .993, an error of about .7 %.

For Th it was .984, an error of 1.6 %.

The contrasting results are accentuated by further contraction of the

computational domain. Figures 5 and 6 show the results obtained for L --

2.5 employing boundary conditions HH3 and Th respectively. Even at time

400, the results obtained with the nonreflecting condition are seen to be

significantly in error, while those obtained with our asymptotic condition

are not. Again, the steady state density found using HH3 is correct while

that found using Th is off by about 12.5 %.

It is worthwhile to note the significant fluctuations in the variables which

occur near the origin. We believe this is a natural consequence of the fo-

cussing of incoming spherical waves. The diminished amplitude of these

fluctuations resulting from Th on the smallest domain is evidence of its in-

accurate representation of the transient solution. That is, some physical,

incoming waves were not generated.

Computations were performed on a Sun Microsystem 3/260 with a float-

' 15



ingpoint accelerator.It took about56secondsof cputimefor thefirst case

(L = 5) and 30 seconds for the second case (L = 2.5). In each case the total

number of time steps was 2000.

In conclusion, we have established the accuracy of our reflecting condi-

tion even when implemented on a domain of modest size. Such ideas become

crucial in truly multidimensional computations. Though we have not per-

formed any such computations, we present ideas in the next section for the

generalization of our boundary conditions to nonsymmetric problems.

GENERALIZATIONS TO NONSYMMETRIC FLOWS

We now consider the Euler equations in spherical coordinates for non-

symmetric, isentropic flows. The new dependent variables are taken to be

the angular momenta, rn and q:

cgp cgz 10m 1 8q
0-_ + _ + + - gl, (6.1)r c9_ r sin 6 0¢

a--t- -t- _r % f(p) -t- -r _ -t- r sin _ 0¢ = g_' (6.2)

cgt + -_r + r-_ + f(p) + rsin_cg¢ = g3, (6.3)

cg--t+ _rr + -r _'_ + r sin _ 0¢ + f(p) = g4, (6.4)

where we have introduced,

gl

2z m cot

r r

2z 2 _ rn 2 _ _2
g2 =

pr

3mz cot
g3 = --

pr pr

mz cot 8

pr

_ q"),

16



3qz 2qm cot 0
g4 =

pr pr

We again consider a domain exterior to a compact body and assume the

initial conditions satisfy p =po¢ and z = m = q = 0 for r _> L. Following the

construction of section 2, we work with the symmetric Riemann variables, R

and S, as well as the angular momenta. The formal expansion we postulate

has the form:

R(r,e,¢,t) = Ro +
Rl(r, 0, ¢, t) R2(_,0,¢, t)

+ + ..., (6.5)
p p2

s(r,e,¢,t) = So + sl(r,e,¢,t) + s2(,,e,¢,t)r r2 + ..., (6.6)

m(_, 0,¢, t) m_(_,0,¢, t) m3(_,0, ¢, t)
-- r2 -{- r3 -{- ..., (6.7)

q(_,0, ¢, t) _ q2(r,0,¢,t) q3(_,0,¢, t)r2 + r3 + ..., (6.8)

where, borrowing results from the linear case, we assume the angular mo-

menta, m and q, are O(_) as r --* _. The equations for R1, R_, $1 and

$2 are taken unchanged from section 2. This involves the neglect of lower

order terms involving 0 and ¢ derivatives. Although not entirely consistent

with our inclusion of lower order terms involving o, this is justified by the

expectation that the primary direction of propagation in the far field is the

radial one. Expressions for the first corrections may then be copied from

(2.14),(2.16)and (2.17):

sl(_,0,¢,t) = 0, (6.9)

t(_,e,¢,_)

R_(_,e,¢,t(_,e,¢,_)) : _(e,¢,_), (6.10)

[,+e(o,_,_)l
r - L - B(0, ¢,v)in LL+B(o,¢,_.)j (6.11)

I7



More importantly, the boundaryconditions(2.24), (2.26)and (2.27)are

unchanged.Equationsfor m2and q2 are:

0m2 zl 0m2 8pl
ot + _:_ o_ + :'(:oo) oe - o, (6.12)

Here,

and

Oq2 zl Oq2 f'(Poo) OF1
ot + + - o. (6.13)rpoo cgr sin6 69¢

Zl
pooR1 pooH

m m

2 2

p_R1 pooh
Pl --

2J-f(p_) 2_"
We include the t term so that characteristics can be computed. In partic-

I =

ular, at a point of outflow, zl > 0, no boundary condition for m2 and q2

is required. At inflow we may simply use (6.12) and (6.13) without the r

derivative terms to update the angular momenta. In summary we have:

_(a(L,O,¢:)-ao)
2L

L p( L,8 ,dp,t )

(_(,(L,0,¢,t)- CC._ ))_
L

oT

o_ (6.14)

and, if z(L,8,¢,t) < O,

Om'L_-[( ,O,¢,t)

_(L,8,¢,t)) =

1 8

r2_0 [f(p(L,O,¢,t))], (6.15)

1

r2sinOO¢ [f(p(L,O,¢,t))]. (6.16)

18
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